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A simple stochastic model of investment based on communication theory is introduced and analyzed in
detail. We solve it exactly in a simple case and we use a weak disorder expansion to deal with the small
fluctuations of the capital between two consecutive trading periods. Some possible generalizations are also
discussed.@S1063-651X~96!52011-8#

PACS number~s!: 02.50.Le, 05.20.2y

Let us consider an investor, whose aim is to increase a
given capital Z by investing it in several stocksi
( i51, . . . ,M ) with a given strategy. The total amount of
capital is the sumZ5( i51

M Z( i )1Z(0) whereZ( i ) is the
fraction of the capital invested in the stocki andZ(0) is the
capital left at the bank. The capitalZ( i ) is multiplied, at each
trading period, by a factora, a being a stochastic variable
whose distribution is, in general, unknown. For our simple
model we assume uncorrelated distributions; however, in re-
ality, it is well known that such data can be correlated in
time. We believe the following analysis can be readily gen-
eralized to the correlated case as well.

The investment strategy is the following: at each ‘‘time’’
n (n51, . . . ,N), one takes a fractiont iP@0,1# of the capital
Z( i ) and transfers it to the cash bank; at the same time, a
fractions/M of the bank capital is taken from the bank itself
and then added toZ( i ). We can then write our system as

Zn11~0!5~12s!Zn~0!1(
i51

M

t iZn~ i !,

Zn11~ i !5ai
s

M
Zn~0!1ai~12t i !Zn~ i !, ~1!

where, as above defined, we suppose thatai are independent
random variables with common distribution given byr(a).
The system is completely specified by a (M11)3(M11)
random transfer matrixAn since we can writeZW n11

5AnZW n . Note that the system is normalized: ifai51 for all
i , i.e., if there is no gain or loss at each time step, then the
total capital is conserved:Zn115Zn . The first equation im-
plies that after a trading period the amount deposited at the
bank is the sum of two contributions: the part which has not
been transferred and the part coming fromZ( i ). On the other
hand, for each stocki , we have thatZ( i ) is incremented or
diminished depending on the value of the stochastic variable
ai . Note that the choice of~1! is not the only one possible:
one may defineZn11( i )5s/MZn(0)1ai(12t i)Zn( i ), e.g.,
we may decide not to bet the fraction of the capital trans-
ferred from the bank. This choice, however, has the disad-
vantage of rendering calculations much harder and leaving
the qualitative behavior unchanged.

The goal is to optimize the capital gain by varying the
set $j%5$s,t1 , . . . ,tM% @that is to have the largest
Z5( i50

M Z( i ) after N trading periods, in the limitN→`#.

How is it possible to decide the best strategy once we know
r(a), and with fixedM? We find that a special case of this
problem can be mapped to a classical one in communication
theory. Indeed in the 1950s Kelly considered this type opti-
mization, albeit using information theory@1#. His model is
based on the concept of the so-calledrate of transmissionin
a communication channel, as introduced by Shannon@2#.
Suppose one considers a channel and uses it to transmit a set
of data between two distant units, e.g., the results of a change
situation before they become common knowledge. A given
gambler would like to use this source of information to put
bets in order to increase his money. The question is: how
much should he bet each time in order to maximize his gain?
The answer, of course, relies on the ‘‘quality’’ of the signal
he receives. If the channel is noiseless, i.e., if the gambler
has exact information, then the best strategy is obviously to
bet the whole amount of money he has. For example, if one
is supposed to gain a fractionK of the capital after each good
bet, then, afterN steps he will haveKN times the original
bankroll. The situation is more complicated if one considers
a noisy channel, that is the situation in which the gambler
has a given probability to get the correct information through
the channel~as a result of noise and disturbances in the trans-
mission!. In that case if the gambler would bet at each time
n his entire capitalZn , in order to maximize the expected
value^Zn&, then the result would be that ifN is very large he
will lose the whole capital. In fact in@1# it is shown that the
correct strategy consists of maximizing theexponential rate
of growth of the gambler capital, defined as

l~$j%!5 lim
N→`

1

N K lnZNZ0 L . ~2!

This quantity has a great importance: in the mathematical
theory of communication it represents thecapacityof a dis-
crete channel@2#, while in theoretical physics corresponds to
theLyapunov characteristic exponent. It has important appli-
cations in chaotic dynamical systems, statistical mechanics
of disordered systems, localization problems and turbulence.
Without entering into any mathematical definition~the inter-
ested reader may see@3#! we point out that the problem of
maximizing ~2!, instead of the usual mean, comes from the
need of thequenchedaverage in disordered systems. In
fact, as is well known, if one considers the product
PN5x1x2•••xN of N independent stochastic variables, then
the typical value will be given by exp(N^lnx&) and not by the
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annealedaverage^x&N, since only the fluctuations around
the first quantity vanish forN→`. In our model the product
PN is obviously given byPN5P i50

N Zi11 /Zi . Physically it
means that if one tries to increase his capital by maximizing
the annealed average^ZN& he could finally be broke, since
the fluctuations around that quantity increase withN.

The noisy channel corresponds to the stochastic fluctua-
tions of stock prices and a bet of the gambler to the invest-
ment in a given stock in one trading period.

Using our present notation, instead of~1!, Kelly’s model
is specified by the following stochastic evolution equations
~in his paper Kelly considered only the caseM51):

Zn11~0!5~12s!Zn~0!1~12s!Zn~1!,

Zn11~1!5asZn~0!1asZn~1!. ~3!

The physical meaning is that at each time step, after collect-
ing the whole amount of money, one decides to preserve a
fraction 12s and to bet a fractions. In other words, this
can be considered as a ‘‘nonlocal’’ version of our model,
since in~1! we have the freedom to decide how much of the
capital Z( i ) to bet, independently from othersZ( j ). In
Kelly’s model the random transfer matrix defined by~3! has
vanishing determinant. This means that the two equations are
not independent, and in fact it is simple to write the above
system by means of a single stochastic equation for the glo-
bal capitalZ(0)1Z(1). Therefore the problem reduces to a
product of random numbers, rather than matrices, and it pre-
sents no mathematical troubles since the calculations ofl is
in this case straightforward@3#. The main point is that ma-
trices do not commute in general: Kelly’s model was far
easier to solve since numbers allow one to use a special order
and then large number law applies.

Let us now turn back to the model defined in~1!: in order
to calculate the exponential rate of growthl, we should con-
sider the quantity~sometimes calledresponse function!

Rn5uZW n11u/uZW nu, whereuZW nu is, as usual, the norm ofZW n .
The Oseledec theorem@4# ensures that the Lyapunov char-
acteristic exponent is a self-averaging quantity, that is in~1!
we can disregard the average^ & and calculatel from a
single disorder realization. Equivalently, we can calculatel
from

l~$j%!5 lim
N→`

1

N
lniPNi , ~4!

wherePN5Pn51
N An . Usually the normi i that appears in

the above formula is the maximum of the eigenvalues of the
spectrum ofPN . Our problem is then reduced to the calcu-
lation of the Lyapunov characteristic exponent of a product
of independent random matrices with a given distribution. In
general, there is no hope to accomplish this goal analytically,
apart from very special situations, for example the case in
which all An commute with each other and one can simply
apply the large numbers law to get the result that
l5max$^lnugku&% wheregk are the eigenvalues ofA @3#. This
is, for instance, the case of Kelly’s model.

At this point we are then forced to introduce some sim-
plifications or rely on numerical simulations. The simplest

nontrivial model is defined by a 232 transfer matrix; this
implies investment in only one stock and a cash bank:

A5
1

11s S 1 Kt

sa KaD 5
1

11s
A8, ~5!

with s5s/(11s), t5t/(11t), and K5(11s)/(11t).
These new parameters are simply introduced for future con-
venience. We finally find that the rate of growth is given by

l~s,t !52 ln~11s!1 lim
N→`

1

N
ln TrS )

n51

N

An8D . ~6!

It is easy to show that our system~1!, for M51, is deeply
related to the one-dimensional~1D! random field Ising
model ~RFIM! sinceA8 is mathematically equivalent to the
transfer matrix of that system. For a general distribution
r(a) no analytical solutions are available even for this sim-
plified model@5#. Derrida and Hilhorst showed that a naive
Taylor expansion around the low-temperature phase
(t,s→0) does not converge if̂a&.1.

In one nontrivial case, however, the full solution can be
found, and it corresponds to the situation in which at each
trading period, with probabilityp the fraction of capital
Z( i ) is increased by a factora.1, and with probability
12p it is completely lost. In other words, we define a
product of Bernoulli random matrices with density
r(a)5pd(a2a)1(12p)d(a). We outline the main steps
of the calculation. Due to fact thatZ(0)/Z(1) has upper and
lower bounds not depending onN, the response function can
be expressed asRn5Zn11(0)/Zn(0)5Zn11(1)/Zn(1) and
it satisfies the following nonlinear difference equation:

Rn11511aK1aK
st21

Rn
5F~Rn!, ~7!

with initial conditions given byR05R151. The solution of
this equation is given by

Rn5
f 1z1

n111 f 2z2
n11

f 1zs
n1 f 2zs

n , f 1,25
z1,22aK

z1,22z2,1
,

z1,25
11aK

2
6@~11aK!214aK~st21!#1/2. ~8!

In general, the Lyapunov characteristic exponentl can be
calculated once the stationary distribution of the response
function P(R) is known, since, supposing the system er-
godic,l5*P(R)ln(R)dR. As we know the evolution of the
response function, given by~7! and ~8!, one is tempted to
write down an integral equation forP(R) by using the trans-
formation laws between two stochastic variablesRn11 and
Rn :

P~Rn11!5E dar~a!E dRnP~Rn!d„Rn112F~Rn!….

~9!
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The stationary distribution is the fixed point of the above
integral equation~if it exists!. Unfortunately, once the full
expression forF(Rn) is introduced, and thed function is
expressed in terms of the integration variable, the resulting
integral equation is too difficult to be solved, in general.
With our assumption onr(a), however, it is simple to show
that the solution must have the form

P~R!5~12p! (
n50

`

pnd~R2Rn!,

l~s,t !5~12p! (
n50

`

pn@ ln~ f 1z1
n111 f 2z2

n11!

2 ln~ f 1z1
n1 f 2z2

n!#2 ln~11s!, ~10!

with a5a in the preceding expression. In Fig. 1 we compare
the exact solution~10! with the numerical calculation ofl
for the particular cases5t, a52, p50.7. We see that, as
one may expect, there is a maximum of the exponential rate
indicating which is the optimizing fraction of capital one has
to invest to get the best profit. Due to the infinite sum ap-
pearing in~10! it is impossible to exactly calculate the maxi-
mum of l. By taking into account the first 40 terms only
@equivalent to an expansion of orderO(p40)# we can numeri-
cally find the maximum. We obtain thattopt.0.9356, or
topt.0.4834, that is, the better strategy for that given set of
parameters consists in transferring, at each step, a bit less
than 50% of the capital.

For sÞt the situation is more interesting, but calculations
become much more complicated, since now one has to find
the maximum of a very complicated function of two vari-
ables. With the same truncated expression and the same set
of parameters we finally obtained thatsopt.0.652 and
topt.0.528 in perfect agreement with the numerical solution.

Despite the complexity of this calculation, we need a
more realistic situation since the hypothesis onr(a) is still
too strong. What actually happens in a given trading period
~if it is short enough! is that the stock prices change by a
small amount with respect to the step before, e.g., a few

percent. This means, for example, that one can imagine de-
fining a random matrix with distributionr(a)5pd„a2(1
1a«)…1(12p)d„a2(12a«)… with «!1. In the RFIM,
that corresponds to a system to which a small external ran-
dom field with opposite signs is applied. In our economic
context this assumption means that at each step we are al-
lowed to gain or lose only a small fraction of the total
amount of money we have invested in a given stock. From
the mathematical point of view we can use a weak disorder
expansion in«, that is, we consider our matrixA8 as the sum
of a diagonalizable matrixB and a random matrixC times a
small expansion parameter:A85B1«C. Here the funda-
mental hypothesis is the nondegeneration of the eigenvalues
of B @6#, since in the very general situation it is not possible
to get a correct perturbation expansion@7#. If, however, the
above hypothesis is fully satisfied, we have~see also@6#!

l5 ln
g1

11t
2

«2

2

^C11
2 &

g1
2 1

«3

3

^C11
3 &

g1
3 1O~«4!, ~11!

where nowg1 is the maximum of the eigenvalues ofB, and
C11 is the diagonal element ofC ~corresponding tog1) in the
base in whichB is diagonal. The averagê& is made with
the densityr(a). Note that there are no first order correc-
tions to the pure~nonrandom! case. In our 232 case, from
~5!, and after some algebra, we get~for simplicity we have
here considered the symmetric cases5t)

g15
11u1v

2
, ^C11

2 &54p~12p!a2S u1v12t221

2v D 2,
~12!

with u511(2p21)a andv5A(u21)214ut2. The result
~up to third order in«) is then compared in Fig. 2 with the
numerical calculation, in the casea51, «50.05, and
p50.51. From Eqs.~11! and ~12! it is a simple matter to
analytically find the value oft at whichl attains its maxi-
mum: for the above case we find thattopt.0.564 or
topt.0.353.

FIG. 1. The Lyapunov exponent plotted versust ~heres5t) for
the case discussed in the text:p50.7,a52. Solid line: exact solu-
tion @Eq. ~10! of the text#. Circles: numerical simulation. The maxi-
mum of the capital gain is att.0.9356.

FIG. 2. The same as in Fig. 1 for the weak disorder case. We
have chosena51, «50.05, p50.51. Solid line: analytical result
from the perturbation expansion truncated atO(«3). Circles: nu-
merical simulation. The maximum is found att.0.564.
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The most interesting aspect of this approximation is that it
can be employed, under certain hypotheses, for the general
case in which one invests his capital in more than one stock
(M.1). Due to the symmetry of the matrix, we can still
perform the calculations, as we will show in a longer paper
@8#.

Another interesting situation is represented by the limit in
which we takeM very large. We could then introduce
a trial mean-field approximation by consideringZ51/
M( i51

M Z( i ).^Z&, and by defining, from~1!, a new problem
for the averaged capital^Z& by means of the mean-field ma-
trix

AMF5
1

11t S 1 t

tā āD , ~13!

whereā51/M( i51
M ai and we have considered the symmetric

case with all t i equal. If the ai are, by hypothesis,
independent stochastic variables with densityr(a)
5pd(a2a)1qd(a2b) (p1q51), one should expect, if
M is large enough, that the distribution ofā is Gaussian with
mean equal to m5pa1qb and variance
@(p2p2)a21(q2q2)b222pqab#/M . Unfortunately, even
in theM→` limit, this is not a good approximation as one
can easily see, for instance, by considering what happens in
the limit t→0 in which all matrices commute and we can
easily find the Lyapunov exponent. We have that
l5max$0,p lna1q lnb% in the true case, while from the
mean-field approximation we obtainl5 ln(pa1qb) ~in the
limit M→`). This discrepancy is due to the fact that for
t!1 the limits M→` and N→` do not commute. This
situation corresponds to the low-temperature phase of the 1D
RFIM @5#, in which the pure system attains a phase transition
and then fluctuations are so strong that the mean-field picture
completely fails~see Fig. 3!.

Some approximation methods for calculating Lyapunov
exponents are well known in the literature@3#, but unfortu-
nately they are not applicable to our case or they give very
bad results. This is the case of the so-calledmicrocanonical
approximation, introduced by Deutsch and Paladin@9#,
which consists in replacing the quenched average in~2! with
an annealed average and by imposing the constraint that the
average is takenonly on those configurations that satisfy the
large number law. Even though it is usually believed that this
approximation is a very satisfactory one~it gives a rigorous

upper bound of the Lyapunov exponent!, one can prove that
in general this is not the case@8#, since the fluctuations due
to the noncommutative nature of the matrices are very
strong. One should then consider the same annealed average
but with more that one constraint@10#. In fact, this method
seems to give very good approximations for the statistical
mechanics of disordered magnetic systems. We will show
our results based on the so-calledconstrained annealingap-
proximation in our longer work.

In this paper we have analyzed a simple investment
model. In traditional portfolio theory one is only interested in
a single time period optimization. We show that for a very
simple 232 matrix model the long time limit result can be
obtained. In fact, the capital growth rate per unit time step
can be interpreted as a Lyapunov exponent, which is a famil-
iar concept in theoretical physics. For more general modes
(M.1), we show, although exact calculations are hard to
perform, meaningful approximations can yield interesting re-
sults. With the availability of more realistic data and distri-
butions, doubtlessly the present study can be extended.

S.G. would like to thank Matteo Marsili for useful com-
ments. This work has been supported by the Swiss National
Foundation for Scientific Research.

@1# J. L. Kelly, Jr., Bell Syst. Tech. J.35, 917 ~1956!.
@2# C. Shannon,The Mathematical Theory of Communication

~University of Illinois Press, Urbana, 1949!.
@3# A. Crisanti, G. Palandin, and A. Vulpiani,Products of Random

Matrices in Statistical Physics, Series in Solid States Sciences
Vol. 104 ~Springer-Verlag, Berlin, 1993!.

@4# V. I. Oseledec, Trans. Moscow Math. Soc.19, 197 ~1968!.

@5# B. Derrida and H. J. Hilhorst, J. Phys. A16, 2641~1983!.
@6# B. Derrida, K. Mecheri, and J. L. Pichard, J. Phys.~France! 48,

733 ~1987!.
@7# N. Zanon and B. Derrida, J. Stat. Phys.50, 509 ~1988!.
@8# S. Galluccio and Y.-C. Zhang~unpublished!.
@9# J. M. Deutsch and G. Paladin, Phys. Rev. Lett.62, 695~1989!.

@10# M. Serva and G. Paladin, Phys. Rev. Lett.70, 105 ~1993!.

FIG. 3. Comparison between the mean-field solution fors5t
(n) and two numerical solutions in the largeM limit. In particular,
M5103 (s) andM5104 (h). Solid lines are guides for the eyes.
Note the failure of the mean-field approximation in the ‘‘low-
temperature’’ phase att→0.
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